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ABSTRACT 

We consider the dynamical consequences of Biermann’s suggestion that gas is often streaming out- 
ward in all directions from the sun with velocities of the order of 500-1500 km/sec. These velocities of 
500 km/sec and more and the interplanetary densities of 500 ions/cm3 (1014 gm/sec mass loss from the 
sun) follow from the hydrodynamic equations for a 3 X 106 ° K solar corona. It is suggested that the 
outward-streaming gas draws out the lines of force of the solar magnetic fields so that near the sun the 
field is very nearly in a radial direction. Plasma instabilities are expected to result in the thick shell of 
disordered field (10-5 gauss) inclosing the inner solar system, whose presence has already been inferred 
from cosmic-ray observations. 

I. INTRODUCTION 

Biermann (1951, 1952, 1957a) has pointed out that the observed motions of comet 
tails would seem to require gas streaming outward from the sun. He suggests that gas 
is often flowing radially outward in all directions from the sun with velocities ranging 
from 500 to 1500 km/sec; there is no indication that the gas ever has any inward motion. 
Biermann infers densities at the orbit of earth ranging from 500 hydrogen atoms/cm3 

on magnetically quiet days to perhaps 105/cm3 during geomagnetic storms (Unsold and 
Chapman 1949). The mass loss to the sun is 1014-1015 gm/sec. It is the purpose of this 
paper to explore some of the grosser dynamic consequences of Biermann’s conclusions. 

For instance, we should like to understand what mechanism at the sun might con- 
ceivably be responsible for blowing away the required 1014-1015 gm of hydrogen each 
second, with velocities of the order of 1000 km/sec. All known mechanisms, such as 
Schlliter’s (1954) melon-seed process, are limited more or less to the speed of sound 
(Parker 1957¿>), minus the deceleration of viscosity and the solar gravitational field. Even 
at a coronal temperature of 3 X 106 ° K, the thermal velocity of a hydrogen ion is only 
260 km/sec, and escape from the solar gravitational field (starting 3 X 105 km above 
the photosphere) requires 500 km/sec, to say nothing of leaving a residual 500-1000 
km/sec at infinity. 

Then again, if Biermann’s conclusions are correct, we should like to know what con- 
figuration of the general solar dipole magnetic field we might expect in interplanetary 
space. Ionized gas, streaming outward with more or less spherical symmetry from the 
sun, would be expected to carry the general solar field with it, so that the lines of force 
are everywhere in the radial direction and extend far out into interplanetary space. 

We shall begin our investigation at the sun, which we idealize to be a gravitating ball 
of mass Mq with spherical symmetry. We shall at first completely neglect any solar 
magnetic fields. With r denoting distance measured from the center of the sun, we shall 
take the effective surface of the sun (so far as the outward flow of gas is concerned) to 
be r = a and choose a = 106 km, representing the outer solar corona. We denote the 
kinetic temperature of the gas by T(r), its density by A(r), and its radial velocity by 
v(r). We shall suppose the conditions at r = a to be given, To, Yo, flo- Optical observations 
suggest (van de Hulst 1953) that No is of the order of 3 X 107/cm3. The mean value of 
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flo is not large in the solar corona, the only evidence of outward motion being the exist- 
ence of streamer-like structures, so conspicuous in eclipse photographs of the solar 
corona. 

Now the total outward flux of kinetic energy transported by hydrogen gas with 
velocity v and kinetic energy density is I(r) — lirMNvb2 ergs/sec, where M is 
the mass of the hydrogen atom. Using N = 500 cm3 and v = 500 km/sec at the orbit 
of earth {r — 1.5 X 1013 cm), we find that / = 1.5 X 1029 ergs/sec. This is to be com- 
pared to the usual energy loss (van de Hulst 1953) to the corona (2 X 104 ergs/cm2 sec 
due to thermal conduction and 1 X 104 ergs/cm2 sec due to radiation) amounting to 
about 3 X 1027 ergs/sec. We see then that the flow of gas out of the solar corona, suggest- 
ed by Biermann, involves 102 times as much energy as heating the static corona. 

One may reasonable ask, therefore, whether heating of the corona is not merely a 
by-product of the immensely more energetic phenomenon of outflowing gas. If we had a 
scheme for ejecting the gas independently of the coronal temperature, then it would cer- 
tainly seem more reasonable to adopt such a view. But we do possess plausible mecha- 
nisms (Biermann 1948; Schwarzschild 1948; Schatzmann 1949, 1951; Schirmer 1950; 
Burgers 1951; van de Hulst 1953; Cowling 1956; PiddingtonJ^Só) for maintaining high 
coronal temperatures independently of outflowing gas, and we shall find that the out- 
flow of gas can be made to follow rather simply from coronal heating to million-degree 
temperatures. On the other hand, we do not know of any mechanism which might result 
in gas leaving the sun at 1000 km/sec and which does not originate as a consequence 
of a high coronal temperature. Therefore, we shall for the present adopt the supposition 
that the basic process is the heating of the coronal gases to ^106 ° K. The outflow of gas 
we take to be a secondary effect. We shall suppose that the heating is able to supply as 
much as 1.5 X 1029 ergs/sec. Naturally, such a view will ultimately require a careful 
re-examination of coronal heating mechanisms, taken up in the following paper. 

II. STATIC EQUILIBRIUM 

The high temperature of the solar corona suggests that the gas associated with it is 
fully ionized. Thus the total gas pressure is 2NkT. For static equilibrium we have the 
usual barometric relation, 

0 = -^- (2NkT) (1) 
dr r2 

For ionized hydrogen of the densities we are considering, the thermal conductivity is 
(Chapman 1954) 

K (D ^ 5 X 10_7rn ergs/cm2 sec °K , (2) 

where w = -§. For neutral hydrogen, elementary kinetic theory yields 2.5 X 103 Tn, 
where n = 

Sufficiently far from the sun, where there are no local heat sources, the steady-state 
heat-flow equation, V * [k(T)vT] = 0, requires that T(r) fall off with distance as 
r~i/(n+i). If for the moment we suppose that there are no sources of coronal heat beyond 
r = a, then 

v /aY/(n+1) 
r(f)=roy , o) 

and we may immediately integrate equation (1) to give 

/r\l/(n+l) c 1) -| r/a\n/(n+1) ,1 ) 
N (r) = No (-) exp j [-1^] [(7) - l] [, 
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where X is the dimensionless parameter GMqM/2kT^a. We see that, for n > 0, N(r) 
becomes infinite, according to 

N{r) No 
G 

r\ l/(n+i) 
exp 

X (n “f-1 ) 
n 

(5) 

as r becomes large. For n < 0, N(r) vanishes at infinity. For ^ = 0 we have 
[{n + 1)A] [1 — (a/V)w/(n+1)] > ln (.a/r)i so that 

IV U) = No 1 • (6) 

The pressure p(r) = 2NkT varies as 

(7) 

when n 0, or as 

P(r) =po ^ 

if ^ = 0. 

(8) 

We see, then, that, with the temperature varying as in equation (3) and with n at 
least as large as the 0.5 for neutral hydrogen, we have non-vanishing pressure at 
infinity, 

p(co) = p0 exp X(^+l) 
n 

(9) 

for hydrostatic equilibrium. With n = 2.5 (for ionized hydrogen) and a = 106 km, To — 
1.5 X 106° K, and Mq = 2 X 1033 gm, we have X = 5.35 and p(co)= 0.55 X 10-3 po. 
Even n = 0.5 (for un-ionized hydrogen) yields pi™) = 10-7 po. With standard coronal 
conditions, TVo = 3 X 107/cm3, Tq = 1.5 X 106°K, we have po = 2NokTo^ 1.3 X 
10~2 dynes/cm2. Hence pi™) — 0.6 X 10~5 dynes/cm2 for n = 2.5 and 1.3 X 10~9for 
n — 0.5. 

But at infinity we can expect no more than the interstellar gas pressure, arising from, 
say, 10 hydrogen atoms/cm3 at 100° K, or 1.4 X 10~13 dynes/cm2. Before /K00) could 
be this small, n would have to be as small as 0.27. 

Since we know of no general pressure at infinity which could balance the £(00 ) com- 
puted from equation (9) with the expected values of n, we conclude that probably it is 
not possible for the solar corona, or, indeed, perhaps the atmosphere of any star, to be in 
complete hydrostatic equilibrium out to large distances. We expect always to find some 
continued outward hydrodynamic expansion of gas—without considering the evapora- 
tion from the high-velocity tail of the Maxwellian distribution (Spitzer 1947; van de 
Hulst 1953). 

III. STATIONARY EXPANSION 

Having shown that there is no hydrostatic equilibrium solution with vanishing pres- 
sure at infinity, we shall now consider what steady expansion we might expect from the 
solar corona. In particular, we shall be interested to see whether we can obtain Bier- 
mann’s outflow of gas with not unreasonable coronal temperatures. 

We do not know quantitatively in what manner the heating of the solar corona is dis- 
tributed over r, and in particular we do not know to what distance it extends. We shall, 
therefore, merely assume that T(r) is given, rather than try to compute it by some 
general heat-flow equation. 
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The stationary expansion of the solar corona (which we have just shown is inevitable 
when the pressure at infinity is negligible) satisfies the equation of motion, 

NMv1^-^ ~4-{2NkT) -GNMMq—., uo 
dr dr r2 

and the equation of continuity, 

jL(r2Nv)=o, (id 
d r 

if we suppose that the corona possesses spherical symmetry. It follows immediately from 
equation (11) that 

N (r) v (r) = No v0 (12) 

We shall find it convenient to introduce the dimensionless variables % = r/a, 
T = T{r)/To, X = GMMö/2akTo, \¡/ = ^Mv2/kTo. Then, using equation (12) to elimi- 
nate N, we may reduce equation (10) to 

d_ 

di (iO 

2X 

£2‘ 
(13) 

To integrate equation (13),x obtaining i/' as a function of £, let us suppose that the 
temperature is maintained (by heating mechanisms) at the uniform value To from 
r = a out to some radius r — b. Beyond r = b we suppose that the heating vanishes. 
Since the outward expansion of the corona consumes 1.5 X 1029 ergs/sec and thermal 
conduction is not capable of transporting even 1 per cent as much energy, we may 
reasonably take T to be negligible beyond r = b. 

Hence, in r < we have r = 1, and equation (13) immediately yields 

i/' — In \f/ = \¡/q —In i/'0+4 1n £ — 2X^1— ^ , G4) 

where the constant of integration has been chosen so that ^ at r = a. Beyond 
r = b we have r ^ 0 and 

But we shall find that b is rather larger than a, so that the escape velocity from b is small 
compared to the 500 or 1000 km/sec which we attain at r = Z>. Thus, to a good approxi- 
mation, ip(b/a) represents the gas velocity at large distances from the sun. 

Now steady outward flow requires a definite value of Vo for any given r0. This mani- 
fests itself in the fact that equation (14) does not yield real values of v{r) for all r > a 
unless î>o has a particular value. Let 

F = 4 In ?-2\(l-|), 

Z = i/' —Tn ^ . 

1 Note that if we let # = In r and F = \¡//t — ln(^/r), so that ^/r = H(F), then we may write eq 
(13) in the simple form dF/dq + H(F) — L(q), where L{q) = 1 — 2(d£/¿T)[£2¿(T£2)/¿£ + X/£2] and is 
a known function of q. 
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The value of ^ at £ = 1 is rather less than unity.2 Thus F and Z both decrease from their 
initial values at £ = 1. The quantity Y reaches a minimum3 at £ = A/2 and thereafter 
increases monotonically as £ goes to infinity; Z reaches a minimum at i/' = 1 and there- 
after increases monotonically. If we wish equation (14) to possess a solution ÿ which is 
real (and positive since v[r] must be real) for all values of £ > 1, we see that Y and Z 
must round their minimum points at the same value of £. Thus we must have ^ = 1 
when £ = Â/2, or 

— In = 2X -3 — 41,4 (16) 

Fig. 1 —Spherically symmetric hydrodynamic expansion velocity v(r) of an isothermal solar corona 
with temperature Tq plotted as a function of r/a, where a is the radius of the corona and has been taken 
to be 1011 cm 

This yields a value of \p0 (or fl0) such that the outward expansion of gas is steady. It 
follows that 

X 2 X 
-3-4 In-£+4 In £+^. (17) 

If we were by some means suddenly to pump gas out of the sun at a greater rate than 
the 4;Ta2VoNo given by equation (16), we would soon achieve a new steady outflow 
with the same v0 but with increased Ao, assuming To to remain unchanged. 

Figure 1 gives the outward gas velocity v(r) as a function of £ = r/a for various tem- 
peratures T0t We have put a — 1011 cm and M = 1.66 X 10~24 gm, so that A = 8.0 X 
106/r0 and v2 — 1.7 X 10~2 km/sec. We see from Figure 1 that the 500 km/sec re- 
quired by Biermann’s analysis is reached at r = 5a for r0 = 3 X 106°K, 36a for 
To = 1.5 X 106° K, and 200a for To = 1.0 X 106° K. Thus even the 160 km/sec ther- 
mal velocities of 106 ° K are sufficient to push gas out of the solar gravitational field 
(escape velocity 500 km/sec) and give the gas an additional 500 km/sec. 

2 We obviously are not interested in the solution for large ^o, where the gas starts at r = ö with al- 
ready supersonic velocity. 

3 Provided that X > 2. 
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That this effect is a result of spherical, rather than one-dimensional, expansion may 
be demonstrated by considering the general equation of continuity in n dimensions: 

N ( r) » O) = iVoflo 

We maintain the gravitational form GMqMN/t2, and in place of equation (14) we have 

i/' — In i/' = — hi ^0+ 2 (w — 1) In £ — 2 \ ^1 —. (is) 

It is the term in In £ which yields the unlimited velocity as £ —> <». For the spherical 
case we have three dimensions, and the coefficient of In £ is 4. Now, for one dimension 
the In £ term disappears, and the right-hand side decreases monotonically with increasing 
£. Hence \f/ — In ÿ must decrease monotonically with increasing \¡/, and it follows that 
the maximum value of ÿ, occurring at £ = °°, cannot be greater than unity. Thus v is 
limited to less than the thermal velocity. 

Fig 2 —Spherical expansion from a point at a distance s from the center of the sun, simulating 
hypothetical outflow of gas from an active region 

Suppose that, instead of spherical expansion centered about the sun, we consider a 
more local spherical expansion centered around some hypothetical active region on the 
surface of the sun and confined to a narrow cone, as shown in Figure 2. Then we have 
the continuity condition, 

N(r) v(r) = , d») 

where 5* is the distance of the origin of the spherical expansion from the center of the 
sun. In place of equation (14), we obtain 

>/'-ln</' = ^o-ln^o + 41n[(£-£)/(l-£)] -2x(l-!), (20) 

assuming the same gravitational force, —GMqMN/t2, as before. We find that \¡/ must 
equal unity where £ has the value 

which determines the value of vQ for steady-state flow. We note that we must have 
s/a < X/8: Otherwise there is no solution of equation (20) starting with ^ < 1 at £ = 1 
and going to ^ > 1 at £ = o° ? because there is no minimum of the right-hand side of 
equation (20) to match the minimum of the left-hand side at i/' = 1; thus, as in the one- 
dimensional case, \p would be limited to values less than or equal to 1 \i s/a > X/8. 
Figure 3 shows the outward gas velocity v(r) as a function of r for To = 2 X 106° K 
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and s¡a — 0.4 (X/8 = 0.5) against the curves at 2 and 2.5 X 106 ° K for s = 0. We see 
that, when s > 0, larger outward velocities result from the same temperature. 

IV. CORONAL HEATING AND MASS LOSS 

Consider the problem of heating an expanding solar corona. As was pointed out 
earlier, the necessary expansion consumes at least 1.5 X 1029 ergs/sec. If we could 
assume that 5 X 10~5 of the electromagnetic radiation escaping from the sun was ab- 
sorbed by the corona, then adequate heat would be supplied, and no further restrictions 
would need to be imposed. But let us suppose that the corona cannot be heated electro- 
magnetically and so, presumably, must be warmed by mechanical means (van de Hulst 
1953). We shall suppose that by some mechanical process, such as acoustical or hydro- 
magnetic waves, energy is transported from the photosphere out through the corona4 

and is finally absorbed in thermal motions beyond r = a to heat the coronal gas. Then 
a rough upper limit to the mechanical transport is probably given by the product of the 
thermal energy density, U, and the speed of sound, or thermal velocity, u. 

Fig 3 —Hydrodynamic expansion velocity outward from a point distant 0 4a from the center 
of the sun with a coronal temperature of 2 X 106° K, compared to expansion with spherical symmetry 
about the center. 

Now if we suppose that the corona is heated only out to a distance r = b, where the 
velocity achieves some value vm (which we shall later take to be 500 km/sec), then the 
total transport of kinetic energy at r = ¿ is (\NmMv£) X (47t¿2) . At smaller values of r 
the transport is X (4tit2) and is less than the total at r = The difference 
must be transported by the coronal heating mechanism, requiring a flux, 

I (r) = ergs/cm2 sec • 

|Jsing equation (12) to eliminate Nm and N, we have 

Hr) =N0v0(^jkTü{im-4,). 

4 In the following paper we suggest that it is probably hydroinagnetic waves that are responsible 
for the heating by Fermi acceleration of ions (Fermi 1949, 1953), 
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Now, if the rate of transport of the thermal energy density 2NkT has a characteristic 
velocity w, then, by the definition of w, the total transport is 2wNkT, plus the convec- 
tion 2vNkT. Neglecting gravitational potential energy, the total must equal 1(f), so 
that, ultimately, 

v[% (ypm — 'p) — 1] . 

The ratio of w to the thermal ion velocity u = (SkT^/M)1/2 becomes 

w 
-= _ 1] , (22) 
14/ 

which is plotted in Figure 4 as a function of r, taking \f/m to be the value of ÿ at which 
v = 500 km/sec. We have suggested that in nature w/u will not greatly exceed unity. 

Fig 4 —Ratio of the effective transport velocity to thermal velocity necessary for maintaining 
the indicated coronal temperatures 

Finally, consider the solar mass loss. It is 

^5=4xa2iVoM»o. (23> 
at 

The outward velocity, flo, and the mass loss are given in Figure 5 for = 3 X 107/cm3, 
taking M equal to the mass of a hydrogen ion. (Note that Biermamfis mass loss of 1014 

gm requires that ^ 160 km/sec where A'o = 3 X 107.) 
Consider Figures 4 and 5 with To = 3 X 106° K out to r = 5a. It follows that the 

mass loss is the required 1014 gm/sec, the final outward velocity is the required 500 km/ 
sec, and the mechanical transport velocity, w, does not exceed the thermal velocity, u. 
A coronal temperature of 2 or 3 X 106 ° K over an extended region around the sun 
would seem to be, then, the simplest origin of the outflowing gas suggested by Biermann. 

Naturally, our choice of a = 106 km has been entirely arbitrary, as has been our 
assumption of spherical symmetry and a uniform temperature5 for a distance beyond 

5 A better model might be, perhaps, to start with To equal to the observed 1 5 X 106 at f = a and 
let the temperature increase outward to 3 X W ç K at, say, r — 2a, 
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r = a. We would not expect the actual conditions to be as simple as we have assumed. 
Unfortunately, our present observational knowledge does not allow construction of a 
more detailed model, nor, indeed, does it supply much information concerning coronal 
temperatures several solar radii from the sun. We hope that such information may be 
forthcoming. 

V. GENERAL SOLAR MAGNETIC FIELD 

Thus far we have ignored the presence of magnetic fields. Consider the effect of the 
general outflow of solar gas, suggested by Biermann, upon the general solar dipole mag- 
netic field. Given that there is a general efflux of gas from the sum, the question is 
whether the gas which flows outward from the sun is threaded by the lines of force of 
the general solar field. If the gas is not threaded by the general field but flows up through 
the field from some field-free region beneath the photosphere in streams which force 
their way between the lines of force, then the outflowing gas probably has no great 
effect on the solar dipole field. At most, one would expect a few local perturbations of 
the general field whose time average is very nearly an ordinary magnetic dipole. 

Fig 5 —Steady outward velocity at a = 1011 cm and the resulting solar mass loss if the hydrogen 
density is 3 X 107/cm3, as a function of coronal temperature 

But suppose, on the other hand, that there are no field-free regions in the sun from 
which the gas may issue, so that each cubic meter of gas flowing outward from the sun 
is threaded by magnetic lines of force from the main bulk of the sun. Then we expect 
that the outward-streaming gas, because it is ionized, will carry the imbedded lines of 
force with it. The lines, being imbedded in both the sun and the ejected gas, will be 
stretched out radially as the gas moves away from the sun. If beyond some distance 
r = b from the sun the steady efflux of gas has some semblance of spherical symmetry, 
then after a time the lines of force will be entirely radial (neglecting the rotation of the 
sun). The radial configuration will be as universal as Biermamfls outward-gas motion, 
which is responsible for it. 

One does not observe field-free regions on the surface of the sun (Babcock and Babcock 
1955) either near the poles or in the more chaotic equatorial regions. The hydrodynamic 
convection in the ionization zone beneath the photosphere apparently mixes the gas 
and whatever fields it carries, from the observed surface of the photospheric granules 
down to a depth of 105 km or more; magnetic fields are observed at the photosphere 
and hence may be assumed down to 1 or 2 X 105 km. The steady dipole character of 
the north and south polar magnetic regions suggests that their fields may extend all the 
way through the sun. Thus there is no observational reason to believe that there are 
field-free regions anywhere in the sun. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
58

A
pJ

. 
. .

12
8 

. .
 6

64
P 

INTERPLANETARY GAS 673 

What is more, it has been shown elsewhere (Parker 1957a, b) that a blob of field-free 
gas encysted in a large-scale magnetic field may spread out without limit along the lines of 
force and will also tend to split lengthwise. Thus at least one dimension of the blob will 
decrease without limit, and the gas will soon diffuse into the surrounding magnetic field. 
Therefore, we tentatively suggest that the gas flowing out from the sun is not field-free 
but carries with it magnetic lines of force originating in the sun. Hence, with the more 
or less steady outflow suggested by Biermann, we expect a radial solar magnetic field, 
falling off approximately as 1/r2 in interplanetary space. 

It is a simple matter to compute the steady-state magnetic field resulting from a 
spherically symmetric outflow of gas from a rotating star. We shall suppose that beyond 
some distance r = b both the solar gravitation and outward acceleration by high coronal 
temperature may be neglected, so that the outward velocity is a constant, vm; in the 
frame of reference rotating with the sun we have the gas velocity, in spherical co-ordi- 
nates, 

vr — vm , ve = 0 , ^0 = co ( r — ¿>) sin 0 , (24) 

where co is the angular velocity of the sun. 
The streamline with azimuth 0O at r = is given by 

i~1_lnö)=£(0“<i)o)- (25) 

Since one end of each line of force is fixed in the sun and we are considering only steady- 
state conditions, it is obvious that the lines of force of the magnetic field coincide with 
the streamlines. Since V ’ Æ = 0, it follows6 that the magnetic field at the point (r, 0, 0) 
is given by 

Br ( r, 0, <£) =B ( 0, (bo) ^ , 

Be(r, d, (b) = 0 , (26) 

B+ir, 0,40 =B (6, fa) (^-) (r - b) sin 6, 

where 4> and <bo are related by equation (25). 
B(0, (bo) represents the field at r = If we believe that only the solar dipole field 

threads the escaping gas, then B(0, <£o) = Bo cos 0. If, however, the more complex fields 
of the equatorial regions participate, then B(0, (bo) is of a more complicated nature, and 
we might expand B as ^Anm P% (cos 0) cos m (<¿0 — <bm). But in either case, the lines of 
force follow equation (25), which is sketched in Figure 6 for 6 = 5 X 1011 cm, vm — 
1000 km/sec. 

It is obvious from equation (25) that the lines of force spiral more and more with in- 
creasing r. For small r, B^ ^ 0, but, for large r, B$/Br ~ (cor sin B)/vm, which increases 
without limit. The surface on which B^ is equal to Br and on which each line of force 
makes an angle tt/4 with the radius vector is 

r — b — — sin 0 . 
co 

Or, since vm co¿>, it is the circular cylinder, 

r^— sin 0 . (27) 
CO 

6 To prove this formally, we need only note that if no net flux is being transported out of the sun, 
then we must have B = av, where a is a scalar function. Since V*5 = 0, we obtain a partial differential 
equation for a, the characteristic curves of which are (25), and yielding a = (a/r)2 along all such curves. 
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The angular velocity of the sun is approximately co ^ 2.7 X 10~6. Thus the radius of 
the cylinder on which becomes equal to Br is 2.5 a.u. for vm — 1000 km/sec. 

VI. INTERPLANETARY MAGNETIC EIELD AND RETARDATION OE SOLAR ROTATION 

In the solar corona the 1-gauss solar dipole field has an energy density which is of 
the same order as the kinetic energy density and hydrostatic pressure of the coronal 
gas. However, as may be seen from the equation of continuity (12) and from equation 
(24), the kinetic energy density %NMv2 falls off with increasing r {> b) only as r~2, 
whereas equation (26) indicates that the magnetic energy density will decrease as r~A 

so long as r is less than the value given by equation (27), and as r“2 thereafter. It follows, 
therefore, that we do not expect the general solar dipole field significantly to influence 
the motion of the outflowing gas, once the gas has left the solar corona. Whether or not 
the denser fields associated with active regions in the equatorial zone are ever inflated 
to such an extent that they contribute to Biermann’s general streaming of gas is an 
open question. Obviously, very much more energy would be required to extend such 
fields because the magnetic energy could be enormously larger than the final kinetic 
energy. If the magnetic fields were sufficiently dense, one might expect significant devia- 

Fig 6 —Projection onto the solar equatoria] plane of the lines of force of any solar field which is 
carried to infinity by outward-streaming gas with velocity 103 km/sec 

tions from the velocity field given in equation (24), with a tendency toward rigid rota- 
tion with the sun. As Biermann (1957Z>) has poirited out, the motions of comet tails 
give no indication of any rigid rotation. Therefore, we shall suppose that the velocity 
field (24) does not lead to an unreasonable picture, equation (26), of the solar magnetic 
field in interplanetary space. 

Consider the torque which might be exerted on the sun by the spiral field given in 
equation (26). The torque about the s-axis exerted across the surface of a sphere of 
radius r by the stresses in the magnetic field B is 

L = r^fjd 9 sin (^r)r sin 0 

= ^- —(i --) f*dd sin3 e f^d^id, . 
4 7T vm \ r/Jç y0 

For the case of a simple dipole field at the sun with a density B0 at the poles, we have 
B — B^ cos 6 and 

L(r) 

L(r) vanishes z,tr — b because of the idealized velocity field adopted, completely ignor- 
ing the magnetic stresses. The maximum torque which we could conceivably expect to 
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be exerted on the sun is L(°o). With vm = 1000 km/sec and 5 = 2 X 1011 cm, we obtain 
Z(oo) = 5.8 X 1030 dynes/cm. The moment of inertia, 7, of the sun is of the order of 
2 X 1054 gm/cm2, so that the characteristic angular deceleration time is Iw/L = 1018 

seconds or 3 X 1010 years. We conclude, therefore, that the torque exerted on the sun 
by our interplanetary model of the solar field is not serious. 

VII. PLASMA INSTABILITY AND THE INTERPLANETARY MAGNETIC SHELL 

It was shown in Section IV that within 1 or 2 a.u. of the sun we expect the lines of 
force of the general solar magnetic field to extend radially outward, so that the field 
density falls off as r~2. Taking the gas from the sun to be moving with more or less con- 
stant velocity in a radial direction, once it gets a little way out from its source at the 
corona, we see that expansion of the gas is primarily perpendicular to r, and hence to R, 
within 1 or 2 a.u. from the sun. As result of the low collision frequency of the ions in 
the tenuous gas, the thermal motions will become anisotropic, with the gas pressure pn 

perpendicular to B rather less than ps parallel. It is readily shown from the equations of 
motion of a plasma (Parker 1957Z>, 1958&) that the velocity of propagation of a hydro- 
magnetic wave is [B/ (47rp)1/2] [1 + 47r(^n — pa)/B2]1/2 when the thermal motions are not 
isotropic. When 47r(^s — pn) > B2, this velocity becomes purely imaginary, and the 
wave does not propagate. Instead, its amplitude increases exponentially with time. It is 
estimated that a wave length of 106 km has a characteristic time of growth of the order 
of 4 hours; shorter wave lengths grow correspondingly faster. 

It follows, therefore, that the smooth idealized fields such as we have sketched in 
equation (25) and in Figure 6 are certainly to be complicated by a disorganized region 
extending from about 1 a.u. outward;7 the inner solar system is surrounded by a thick 
shell of tangled magnetic field of about 10~5 gauss. Observational evidence of both the 
radial field inside 1 a.u. and the disorganized shell surrounding 1 a.u. comes from the 
onset and subsequent decay of cosmic rays from solar flares (Meyer, Parker, and Simpson 
1956; Simpson 1957). 

The dynamic instability leading to the thick shell of disorganized field is discussed at 
greater length elsewhere (Parker 1958a, 6). We have mentioned it here as a warning to the 
reader against taking too literally any of the smooth idealized models which we have 
constructed in this paper. 
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